
Dexter R Shepherd

Examining How the
Mutation Rate Effects the
Performance of a Genetic

Algorithm
AI&AB G6042

11-03-2021

Abstract

This pap er describ es how mutation rate effects the performance and
speed of a genetic algorithm (GA) converging on a solution. A Genetic
algorithm is an alternativ e to conventional metho ds such as brute force
and greedy algorithms. The genetic algorithm is applied to a rob otic
chassis which learns to walk using the same genot yp e to start with and
differen t mutation rates for each exp erimen t. It is found that 20% was
the optimal mutation rate. When mutation rate is a high percen tage the
algorithm makes more mistak es and when mutation rate is to o low the
algorithm does not mak e the needed changes in time to find an optimal
solution.

1 Intro duction
Genetic algorithms (GA) allow systems to adapt randomly to find solutions.
This minimizes the time that the developer needs to spend creat ing a solution .
Some tasks are to o complicated or time consuming for a developer to code a
solution. Tasks such as walking require balance and correct movement all in
concurrence with one another. Using a GA is a known approac h to satisfy-
ing a solution while considering both constrain ts. An issue arises where these
solutions have an enormous search space and can be impractical for solving a
solution quickly [4]. Researc h on bip edal genetic algorithms typically tak es more
generations to arriv e at a candidate solution the more motors there are. [2] In
this pap er, we will explore how the mutation rate affects the performance of
a genetic algorithm, carr y out researc h using a number of mutation rates, and
conclude the optimal rate to arriv e at a solution quickly.

This is an interesting topic due to the significan t part physical rob ots will
one day have in society. We think very litt le ab out the complex movements we
perform everyda y. Being able to master optimization for rob otics will help get

1

to this stage. In this experimen t we will see how key to th e performance of an
algorithm mutati on rate is.

1.1 Problem Statemen t
The aim of the exp erimen t is to driv e a chassis of 4 micro servos to optimize a
metho d of tra vel. This is a simple low cost chassis which will allow more focus
on the GA than on the hardw are. Each servo can turn from 0 to 180 degrees.
It is the job of th e algorithm to mutate movement at a number of rates to find
the optim um.

1.2 Previous work
A number of authors within genetic algorith ms and rob otics have been involving
neural net works and deep learning [4] [3]. It was found that neur al net works
being appli ed with genetic algorithms was impractical due to the large search
space. The exp erimen t found the staged evolution metho d significan tly im-
proved the convergence to a solution.

We will be using a similar metho d of encoding motor patterns into a rob ot
[4], however without the use of a neural net work.

There has been self-organizing systems created in the past which use positiv e
and negativ e feedback to optimize a rob ots walk [5]. The pap er by Maes to ok a
more constructivist approac h than the GA selectionist approac h. This metho d
used less memory due to the way it built up information rather than selected
out. This exp erimen t tested the algorithm on a simpler physical model which
used 6 legs. There was less focus on the need to balance compared to more
humanoid chassis. It is the hypothesis of this exp erimen t that GA will work as
a general approac h which will always give us a sub-optimal solution at minim um
and that the mutation rate will decide how quickly the program converges.

2 Apparatus
The chassis chosen, named Bob, uses 4 Tower Pro SG90 micro servos [6]. Each
servo has an operating voltage of 3 to 7.2 Volts and operating curren t of 220Ma.
In a worst case scenario that all servos are running, the battery must provide a
curren t of 880ma.

4 ∗ 220 = 880ma (1)

This can be provided with 4 AAA batteri es which provide 1000ma, and in a
series circuit configuration we have up to 6V.

For a controller we use the Adafruit Feather m0 [1] which is a CircuitPython
running device with limited memory . This memory holds up to around 250 lines
of code (including libraries). The controller will be wired to a servo controller
and HC-SR04 ultrasonic range finder (distance sensor).

2

Figure 1: Bob the bip ed chassis

3 Application of GA
The genetic algorithm will encode a series of motor instructions written as an-
gles. There will be a set number of steps that a rob ot can tak e to perform the
action of taking a step. This will be presen ted as a 2-Dimensional arra y. This
will be known as the genot ype. At each iteration a mutation function will be
applied to the genotype, the genot ype will be performed and the fitness is cal-
culated. This will performed a set number of times, which we call generations.

Each angle will be chosen randomly from an arra y containing integers con-
sisting of man y zeros, a 30 and -30. These represen t the degree of movement
from the curren t angle. We want the ma jorit y of motors to have no movement
but give chance for movement in any direction. We chose 30 degrees as it gives
enough rotation to make a difference, but not to o much th at it has a dramatic
effect. This was a personal choice.

There are two algori thms that will be app lied to the rob ot, a hill climber
and a microbial GA. Diversit y of algorithms will give more rigorous results.

Results will be displa yed showing mutation rates 10 to 80 percent. We will
explore each of the results and data sur rounding it such as average fitness.

A metho d of changing the mutation rate to sample fitnesses will be used
outside the algorithms.

3

Algorithm 1 Hill Climber
Require: F LO AT mutationr ate
Ensure: f itnestg ene

genoty pe← gener ateGene ()
best ← 0
for i = 0to15 do

cur rentg ene ← mutate (genoty pe, M rate = rate)
f it ← f itness (cur rentg ene)
if f it > best then

f it ← best
genoty pe← cur rentg ene

end if
end for
return genoty pe

Algorithm 2 Microbial GA
Require: F LO AT mutationr ate, I N T n

genoty peP op← gener ateGeneP op()
best ← 0
for i = 0to15 do

n1← random (n)
n2← random (n)
cur rentg ene 1← genoty peP op[n1]
cur rentg ene 2← genoty peP op[n2]
cur rentg ene 1← mutate (cur rent gene 1, M rate = rate)
cur rentg ene 2← mutate (cur rent gene 2, M rate = rate)
cur rentg ene 1, cur rentg ene 2 ← tour nament (cur rentg ene 1, cur rentg ene 2)

genoty peP op[n1]← cur rentg ene 1
genoty peP op[n2]← cur rentg ene 2

end for

4

3.1 Fitness
The aim of the rob ot is to walk as far as possible within the limited sequence
space, by using a distance sensor. Fitness will be measured in millimeters,
rather than percentage. These millimeters represen t how far the rob ot got when
stepping out.

f itness = initial D istanc e − cur rentD istance (2)

Any fitness below 4 will be classed as 0 as the rob ot may have tilted to face
the ground. This is not an optimal solution. This does mean the rob ot must
have a reasonable distance between itself and the wall. For this exp erimen t we
will give it 1 meter.

Algorithm 3 Calculate Fitness
Require: I N T star tD istance, I N T endD istance
Ensure: f itnessinmm

gained ← star tD is tance − endD istance 1
if gained > 4 then

return gained
end if
return 0

The ab ove pseudo-co de shows th e fitness where the algorithm is penalized
for being to o close or further away.

3.2 Mutation
Mutation is defined with in the algorithm as a percentage chance that each gene
(motor angle positions) will be mutated. If it is to be mutated a random position
will be chosen, and this position will be changed to another value picked from
our selection of poten tial angles, specified at the beginning of this section.

Algorithm 4 Mutate
Require: Listg enoty pe, f loatr ate , listpossibl eM oves
Ensure: Listmutatedg enoty pe

for i = 0togenoty pe.siz e do
if random p ercentag e() < rate then

step ← genoty pe[i]
step [random p osition ()] ← possibl eM oves [random p osition ()]
genoty pe[1]← step

end if
end for
return genoty pe

5

3.3 Implemen tation
There are two loops, one represen ting an increasing mutation rate and another
for the generations. Each task starts off with the same genot ype in order to
fairly compare the changes made through mutation. This prev ents a randomly
generated genot ype being closer to a walking algorithm than what was gener-
ated for another exp erimen t. Each will have a starting fitness of 0 before the
generation begins. We will gather from mutation rates between (inclusiv e) 10%
and 80%. There will be 15 generations to generate a walking pattern. This
small number is appropriate as there is a limited search space and it is applied
to all exp erimen ts. When implemen ting the microbial GA the population size
could not exceed 3 due to memory issues. As the population size was larger
than two the algorithm could run, as it differed from a hill climber.

A few changes were made to the existing functions from the hill climber, in
the microbial algorithm for memory . This did not effect the end solution as the
functions still performed the same tasks .

At the end of the exp erimen t, significan t mutation rates will be selected
and ran again multiple times to calculate averages. This will be to determined
how effective a mutation rate is and remove fluke values. By the end, three
exp erimen ts will be run on each selected value.

4 Results

Figure 2: Generation versus Fitness of Hill Climber

6

Plotting each fitness of all generations for every percentage didn’t show any
obvious trends. There is a larger grouping of low fitnesses mainly for rates 30%,
40%, 70% and 80%.

Figure 3: Generation versus Fitness of Hill Climber. Blue points show the
microbial points and red shows the hill climber

Figure 3.2 shows the same format of data for the microbial GA. It shows
similar information where the ma jorit y of higher mutat ion rates performed lower
throughout. With 40%, 70% and 20% showing high fitness at the end.

7

Figure 4: Average fitness of each percentage mutation rate

By compressing figure 4 into the average fitness for each generation, we see
20% is considerably higher compar ed to the next top fitness. The hill climber
out performed the microbial in this test case. 20% was still on the high end of
the microbial fitness.

Figure 5: Lowest generation with solution for each mutation rate

8

The plots of the percentages of mutation rate against the earliest generation
of the top solution (mainly sub-optimal) found within each exp erimen t shows
how quickly a solution was found. The average generation of finding a solu-
tion was generation 9 for the hill climber. The microbial average generation of
solution was 7. Only one exp erimen t did not find a solution.

Figure 6: Number of chan ges of best fitness made for each mutation rate

We plot the number of changes made, where the curren t fitness is better
than the held fitness.

9

Figure 7: Maxim um and minimum fitness of each percentage mutation rate

Finally , we see that every exp erimen t fell over or walked backwards at least
once. Th is is how fitness of 0mm is measured.

After analyzing the results, 20, 40 and 70 % mutation rates were selected to
run further exp erimen ts per mutation rate.

Figure 8: Fitness vs mutations of 3 trials for each significan t mutation rate using
the Microbial algorith m

10

Each colour represen ts the same mutation rate, but a different trial. It is
clear to see 0.2 as the higher rate.

Figure 9: Fitness vs mutations of 3 trials for each significan t mutation rate using
the Hill climber

Figure 10: Fitness vs mutations of 3 trial s as averages over the 3 trial s

Figure 10 helps distinguish fluke values and trials within our exp erimen t.

11

5 Discussion
The results show the optimal mutati on rate for the problem of the 4 joint walk-
ing optimization. This was a mutation rate of 20%. The results show th at a
mutation rate of 10% to ok a long time to reach a solution within the hill climber
and found a low fitness solution in the microbi al, most likely due to the fact
that little would change in the genot ype at each iteration. The average fitness
was relativ ely low in comparison to other results.

With a higher mutation rate the rob ot would fall over at a higher rate.
When using the hill climber it would fail to correct this in the next iteration at
a higher mutation rate. We can see in Figure 2 a large number of generations
which fails to gain a high fitness. In Figure 3 we see a steady low fitness. Due to
the large amoun ts of change resulting from a higher mutation rate, it is harder
for the algorithm to work out what caused the low fitness and what didn’t. This
suggests a lower mutation rate is more accurate in locating error.

There was no trend within the number of changes in Figure 6. This is likely
due to the random nature of genetic algorithms. It seems the average change
was from 2 to 3 changes.

Although in Figu re 5 man y of the higher mutation rates converge to a solu-
tion quicker, we see that the average fitness for the resp ectiv e rate s displa yed in
Figure 4 are low.

In Figure 7 the fitn ess is much higher for a 20% rate than th e other mutati on
rates of its algorithm. This is unlikely as a result of the mutation function. 20%
microbial mutation rate out performed the hill climber results.

After experimen tin g with 3 trials on each mutation rate, we see that 20%
out-p erforms th e other chosen rates (see Figure 8). This backs up what has
previously been discusse d within this section.

5.1 Future work
The controller board used in the pro ject had limited memory . This held back
how in depth the algorithms could go, as well as number of steps and population
size. For furth er developmen t in this pro ject one would need a controller with
a larger capacity for longer arra ys. This would likely a Raspb erry Pi for its
Python capabilities.

6 Conclusion
To conclude there is an optim um mutation rate for a genetic algorithm. For the
task of moving a 4 joint chassis, the optim um was 20%. At 20% the algorithm
converged on average in fewer generations compared to other mutation rates
and adapted better to lower fitness than higher mutation rates.

We have demonstrated that the use of a 20% mutation rate is best for a
genetic algorithm for th e task of walking. If the mutation rate is to o high, the
algorithm will find it harder to find which mutations were supp ortiv e to the task

12

and which were not, increasing th e probabilit y of mistak e. If the mutation rate
is to o low, then not enough mutations will tak e place for the algorithm to reach
a optimal or sub-optimal solution in a small number of generations.

20% worked better for both the Microbial and Hill Climber algorithms. This
was found to be the case in a series of rep eated trials. Advancing this model so
that fitness can be tak en via a series of sensor metho ds and a larger population
size of genot ypes will greatly impro ve this exp erimen t. This would be the sub ject
of future work.

References
[1] Adafruit. Adafruit feather m0 overview. https://learn.adafruit.com/

adafruit- feather- m0-basic- proto .

[2] J. Arabas, Z. Michalewicz, and J. Mulawka. Gavaps-a genetic algorithm
with varying population size. In Proceedings of the First IEEE Confer ence
on Evolutionary Computation. IEEE World Congress on Computational In-
tel ligence, pages 73–78 vol.1, 1994.

[3] Tuomas Haarno ja. Learning to walk via deep reinforcemen t learning, 2019.

[4] M. Anthon y Lewis. Genetic programming approac h to the construction of
a neural net work for control of a walking rob ot, 1992.

[5] Pattie Maes and Rodney A. Bro oks. Learning to coordinate behaviours,
1999.

[6] Tower Pro. Micro servo dat asheet. http://www.ee.ic.ac.uk/pcheung/
teaching/DE1_EE/stores/sg90_datasheet.pdf .

7 App endix
Hill Climber

f r om a d a f r u i t _ s e r v o k i t i mpor t Se r vo Ki t
f r om boa r d i mpor t D9 , D6
f r om r a ndom i mpor t r a nd i n t , c hoi c e , r a ndom
f r om t i me i mpor t s l e e p
f r om a d a f r u i t _ h c s r 0 4 i mpor t HCSR04

s ona r = HCSR04 (t r i g g e r _ p i n =D9 , e c h o _ p i n =D6)
ki t = Se r vo Ki t (c h a nn e l s =8)

s e t up mot or s and ge no t y pe
mo t o r St a r t =[90 , 100 , 140 , 110] # s t ar t ang l e s
Mg e n o t y p e =[[c ho i c e ([0 , 30 , - 30 , 0 , 0]) f or x i n r a nge (4)] f or i i n

r a nge (10)] # n s t e ps as max
d i s t No =0

de f ge t Di s t () : # ge t t he d i s t ane r e ad i ng

13

di s t =None
whi l e d i s t ==None : # ge t nume r i c v a l ue

t r y :
d i s t =s ona r . d i s t a nc e

e xc e p t Ru n t i me Er r o r : # do not r e t ur n e r r or
pa s s

r e t u r n i n t (d i s t)
de f move (a ng l e s) :

f or i , a ng i n e n u me r a t e (a ng l e s) : # mov e t he s e r v os by t he g i v e n
ang l e s

i f k i t . s e r vo [i] . a ng l e +a ng >=0 a nd ki t . s e r vo [i] . a ng l e +a ng <=
180 : # v a l i da t e t he c hange

i s i n r ange
ki t . s e r vo [i] . a ng l e +=a ng # s e t e ac h s e r v o t o c hange
s l e e p (0 . 2) # pr e v e n t ov e r c ur r e n t dr aw

s l e e p (1) # gi v e t i me t o r e s t

de f s t (a ng l e s) : # mov e al l s e r v or s t o t he g i v e n ang l e s
f or i , a ng i n e n u me r a t e (a ng l e s) :

k i t . s e r vo [i] . a ng l e =a ng # s e t s e r v o ang l e
de f mut a t e (ge no , r a t e =0 . 2) : # mut a t e t he ge no t y pe wi t h t he g i v e n r a t e

f or i i n r a nge (l e n (ge no)) :
i f r a ndom() < r a t e : # i f r a t e % c hanc e

pos =ge no [i]
n2 =r a nd i n t (0 , l e n (pos) - 1) # mut a t e aga i n
c =[0 , 30 , - 30 , 0 , 0]
c . r e move (pos [n2])
pos [n2] =c ho i c e (c) # un i que
ge no [i] =pos . c opy ()

r e t u r n ge no # r e t ur n mut a t e d
pr i n t (" s t a r t ")
f or z i n r a nge (10) : # l oop t hr ough t he s ampl e s i z e of r a t e s (10 %, 20

%, . . . , N%)
s t (mo t o r St a r t)
l a s t Fi t n e s s =0
s t o r e =[]
ge no t y p e =Mg e n o t y p e . c opy () # c opy ov e r t he mai n ge no t y pe t o g i v e

a f a i r e x p e r i me n t
f or i i n r a nge (15) : # t o t a l of 15 g e n e r a t i o n s

s l e e p (1) # t i me t o r e s e t i f f a l l e n ov e r
d i s t No =ge t Di s t () # s t ar t d i s t
pr i n t (" Ge n e r a t i o n " , i +1)
c u r r e n t Ge n o =mut a t e (g e n o t y pe . c opy () , r a t e =((z +1) / 10)) # mut a t e

v i a r a t e de f i ne d by z

f or j , s t e p i n e n u me r a t e (c u r r e n t Ge n o) : # mov e mot or s by e ac h
pos i t i on s p e c i f i e d i n
ge no t y pe

move (s t e p)

c d =ge t Di s t () # ge t t he ne w d i s t an c e
f i t = d i s t No - c d

pr i n t (c d , d i s t No)
i f c d <=d i s t No a nd c d >10 : # f i t ne s s f unc t i on not wr i t t e n as

f unc t i on t o c ons e r v e
me mor y

14

pr i n t (f i t)
i f f i t > l a s t Fi t n e s s : # i f f i t ne s s i s be t t e r

pr i n t (" f i t t e r ")
ge no t y p e =c u r r e n t Ge n o . c opy () # s e t t he f i t t e r

ge no t y pe
l a s t Fi t n e s s =f i t # s t or e t he be s t f i t ne s s

e l s e :
f i t =0

s t o r e . a ppe nd (f i t) # s t or e t he f i t ne s s of e ac h r ound
s t (mo t o r St a r t) # r e s e t t o s t ar t pos i t i on t o f a i r l y t e s t t he

ne x t g e n e r a t i o n
s l e e p (1)

p r i n t (j , s t o r e) # s how c ons o l e what i s go i ng on

microbial

f r om a d a f r u i t _ s e r v o k i t i mpor t Se r vo Ki t
f r om boa r d i mpor t D9 , D6
f r om r a ndom i mpor t r a nd i n t , c hoi c e , r a ndom
f r om t i me i mpor t s l e e p
f r om a d a f r u i t _ h c s r 0 4 i mpor t HCSR04

s ona r = HCSR04 (t r i g g e r _ p i n =D9 , e c h o _ p i n =D6)
ki t = Se r vo Ki t (c h a nn e l s =8)

s e t up mot or s and ge no t y pe
" " "
Po p Ge n o t y p e =[[[- 30 , 0 , 30 , 0] , [0 , 0 , - 30 , 0] , [0 , 0 , 0 , 0] , [30 , 0

, 30 , 30] , [30 , 0 , 30 , 0] , [0 , 0 ,
- 30 , 0]] , [[30 , 0 , 0 , 0] , [0 , 30

, 0 , - 30] , [0 , 0 , 0 , 0] , [0 , 0 ,
30 , 0] , [30 , 0 , - 30 , - 30] , [30 , 0
, 0 , - 30]] , [[0 , 0 , 0 , 0] , [0 , 0 ,

30 , 0] , [0 , 0 , 30 , 0] , [0 , 30 , 0
, - 30] , [0 , 0 , - 30 , 0] , [0 , 0 , 0 ,

- 30]]]

Po p Ge n o t y p e =[]
pops i z e =3
f or i i n r ange (pops i z e) : # p o p u l a t i o n s i z e 10

Po p Ge n o t y p e . appe nd ([[c ho i c e ([0 , 30 , - 30 , 0 , 0]) f or x i n r ange (4)]
f or i i n r ange (6)]) # n s t e ps
as max

" " "

de f ge t Di s t () : # ge t t he d i s t ane r e ad i ng
di s t =None
whi l e d i s t ==None : # ge t nume r i c v a l ue

t r y :
d i s t =s ona r . d i s t a nc e

e xc e p t Ru n t i me Er r o r : # do not r e t ur n e r r or
pa s s

r e t u r n i n t (d i s t)
de f move (a ng l e s) :

f or i , a ng i n e n u me r a t e (a ng l e s) : # mov e t he s e r v os by t he g i v e n
ang l e s

i f k i t . s e r vo [i] . a ng l e +a ng >=0 a nd ki t . s e r vo [i] . a ng l e +a ng <=
180 : # v a l i da t e t he c hange

15

i s i n r ange
ki t . s e r vo [i] . a ng l e +=a ng # s e t e ac h s e r v o t o c hange
s l e e p (0 . 2) # pr e v e n t ov e r c ur r e n t dr aw

s l e e p (1) # gi v e t i me t o r e s t

de f s t () : # mov e al l s e r v or s t o t he g i v e n ang l e s
ki t . s e r vo [0] . a ng l e =90 # s e t s e r v o ang l e
ki t . s e r vo [1] . a ng l e =100 # s e t s e r v o ang l e
ki t . s e r vo [2] . a ng l e =140 # s e t s e r v o ang l e
ki t . s e r vo [3] . a ng l e =110 # s e t s e r v o ang l e

de f mut a t e (ge no , r a t e =0 . 2) : # mut a t e t he ge no t y pe wi t h t he g i v e n r a t e
f or i i n r a nge (l e n (ge no)) :

i f r a ndom() < r a t e : # i f r a t e % c hanc e
pos =ge no [i]
n2 =r a nd i n t (0 , l e n (pos) - 1) # mut a t e aga i n
c =[0 , 30 , - 30 , 0 , 0]
c . r e move (pos [n2])
pos [n2] =c ho i c e (c) # un i que
ge no [i] =pos . c opy ()

r e t u r n ge no # r e t ur n mut a t e d

f or z i n r a nge (10) : # l oop t hr ough t he s ampl e s i z e of r a t e s (10 %, 20
%, . . . , N%)

l a s t Fi t n e s s =0
Po p Ge n o t y p e =[[[- 30 , 0 , 30 , 0] , [0 , 0 , - 30 , 0] , [0 , 0 , 0 , 0] , [

30 , 0 , 30 , 30] , [30 , 0 , 30 , 0
] , [0 , 0 , - 30 , 0]] , [[30 , 0 ,
0 , 0] , [0 , 30 , 0 , - 30] , [0 , 0
, 0 , 0] , [0 , 0 , 30 , 0] , [30 ,
0 , - 30 , - 30] , [30 , 0 , 0 , - 30]
] , [[0 , 0 , 0 , 0] , [0 , 0 , 30 ,
0] , [0 , 0 , 30 , 0] , [0 , 30 , 0 ,

- 30] , [0 , 0 , - 30 , 0] , [0 , 0 ,
0 , - 30] , [0 , 0 , 30 , 0] , [0 ,

30 , 0 , - 30] , [0 , 0 , - 30 , 0] ,
[0 , 30 , 0 , - 30]]]

f or i i n r a nge (15) : # t o t a l of 15 g e n e r a t i o n s
pr i n t (" Ge n e r a t i o n " , i +1)
s t ()
s l e e p (2) # t i me t o r e s e t i f f a l l e n ov e r
d i s t No1 =ge t Di s t () # s t ar t d i s t

n1 =r a nd i n t (0 , pops i z e - 1) # ga t he r t he p o p u l a t i o n s amp l e s
n2 =r a nd i n t (0 , pops i z e - 1)

c u r r e n t =Po p Ge n o t y p e [n1] . c opy ()
c u r r e n t =mut a t e (c ur r e n t , r a t e =(z +1) / 10)

f or s t e p i n c u r r e n t : # mov e mot or s by e ac h pos i t i on
s p e c i f i e d i n ge no t y pe

move (s t e p)

c d1 =ge t Di s t () # ge t t he ne w d i s t anc e

c u r r e n t =Po p Ge n o t y p e [n2] . c opy ()
c u r r e n t =mut a t e (c ur r e n t , r a t e =(z +1) / 10)

16

s t () # r e s e t t o s t ar t pos i t i on t o f a i r l y t e s t t he ne x t
g e n e r a t i o n

s l e e p (2) # t i me t o r e s e t i f f a l l e n ov e r
d i s t No2 =ge t Di s t () # s t ar t d i s t

f or s t e p i n c u r r e n t : # mov e mot or s by e ac h pos i t i on
s p e c i f i e d i n ge no t y pe

move (s t e p)
c d2 =ge t Di s t () # ge t t he ne w d i s t anc e

pr i n t (ma x (d i s t No1 - c d1 , d i s t No2 - c d2))

i f d i s t No1 - c d1 >d i s t No2 - c d2 : # t o u r n a me n t s e l e c t i o n
Po p Ge n o t y p e [n2] =Po p Ge n o t y p e [n1] . c opy ()

e l s e :
Po p Ge n o t y p e [n1] =Po p Ge n o t y p e [n2] . c opy ()

p r i n t ((z +1) * 10) # s how c ons o l e what i s go i ng on

17

