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Abstract

This pap er describ es how mutation rate effects the performance and
speed of a genetic algorithm (GA) converging on a solution. A Genetic
algorithm is an alternativ e to conventional metho ds such as brute force
and greedy algorithms. The genetic algorithm is applied to a robotic
chassis which learns to walk using the same genotype to start with and
different mutation rates for each experiment. It is found that 20% was
the optimal mutation rate. When mutation rate is a high percentage the
algorithm makes more mistak es and when mutation rate is too low the
algorithm does not make the needed changes in time to find an optimal
solution.

1 Intro duction

Genetic algorithms (GA) allow systems to adapt randomly to find solutions.
This minimizes the time that the developer needs to spend creating a solution .
Some tasks are too complicated or time consuming for a developer to code a
solution. Tasks such as walking require balance and correct movement all in
concurrence with one another. Using a GA is a known approac h to satisfy-
ing a solution while considering both constrain ts. An issue arises where these
solutions have an enormous search space and can be impractical for solving a
solution quickly [4]. Research on bipedal genetic algorithms typically tak es more
generations to arrive at a candidate solution the more motors there are. [2] In
this paper, we will explore how the mutation rate affects the performance of
a genetic algorithm, carry out research using a number of mutation rates, and
conclude the optimal rate to arrive at a solution quickly.

This is an interesting topic due to the significant part physical robots will
one day have in society. We think very little about the complex movements we
perform everyday. Being able to master optimization for robotics will help get



to this stage. In this experiment we will see how key to the performance of an
algorithm mutati on rate is.

1.1 Problem Statemen t

The aim of the experiment is to drive a chassis of 4 micro servos to optimize a
metho d of travel. This is a simple low cost chassis which will allow more focus
on the GA than on the hardw are. Each servo can turn from O to 180 degrees.
It is the job of the algorithm to mutate movement at a number of rates to find
the optim um.

1.2 Previous work

A number of authors within genetic algorith ms and robotics have been involving
neural networks and deep learning [4] [3]. It was found that neural networks
being applied with genetic algorithms was impractical due to the large search
space. The experiment found the staged evolution metho d significantly im-
proved the convergence to a solution.

We will be using a similar metho d of encoding motor patterns into a robot
[4], however without the use of a neural network.

There has been self-organizing systems created in the past which use positive
and negativ e feedback to optimize a robots walk [5]. The paper by Maes took a
more constructivist approac h than the GA selectionist approac h. This method
used less memory due to the way it built up information rather than selected
out. This experiment tested the algorithm on a simpler physical model which
used 6 legs. There was less focus on the need to balance compared to more
humanoid chassis. It is the hypothesis of this experiment that GA will work as
a general approac h which will always give us a sub-optimal solution at minimum
and that the mutation rate will decide how quickly the program converges.

2 Apparatus

The chassis chosen, named Bob, uses 4 Tower Pro SG90 micro servos [6]. Each
servo has an operating voltage of 3 to 7.2 Volts and operating current of 220Ma.
In a worst case scenario that all servos are running, the battery must provide a
current of 880ma.

4 % 220 = 880ma @)

This can be provided with 4 AAA batteri es which provide 1000ma, and in a
series circuit configuration we have up to 6V.

For a controller we use the Adafruit Feather mO [1] which is a CircuitPython
running device with limited memory. This memory holds up to around 250 lines
of code (including libraries). The controller will be wired to a servo controller
and HC-SRO04 ultrasonic range finder (distance sensor).



Figure 1: Bob the biped chassis

3 Application of GA

The genetic algorithm will encode a series of motor instructions written as an-
gles. There will be a set number of steps that a robot can take to perform the
action of taking a step. This will be presented as a 2-Dimensional array. This
will be known as the genotype. At each iteration a mutation function will be
applied to the genotype, the genotype will be performed and the fitness is cal-
culated. This will performed a set number of times, which we call generations.

Each angle will be chosen randomly from an array containing integers con-
sisting of many zeros, a 30 and -30. These represent the degree of movement
from the current angle. We want the majority of motors to have no movement
but give chance for movement in any direction. We chose 30 degrees as it gives
enough rotation to make a difference, but not too much that it has a dramatic
effect. This was a personal choice.

There are two algorithms that will be applied to the robot, a hill climber
and a microbial GA. Diversity of algorithms will give more rigorous results.

Results will be displayed showing mutation rates 10 to 80 percent. We will
explore each of the results and data surrounding it such as average fitness.

A method of changing the mutation rate to sample fitnesses will be used
outside the algorithms.



Algorithm 1 Hill Climber

Require: F LO AT mutationr ate
Ensure: fitnestg ene
genoty pe < gener ateGene ()
best < 0
for i = 0r015 do
currentg ene < mutate (genoty pe, M rate = rate)
fit « fitness (currentg ene)
if fit > best then
fit < best
genoty pe < currentg ene
end if
end for
return genoty pe

Algorithm 2 Microbial GA

Require: F LO AT mutationr ate, IN Tn

genoty peP op < gener ateGeneP op()

best — 0

for i = 0t015 do
nl « random (n)
n2 <« random (n)
currentg ene 1 < genoty peP op[n1]
currentg ene?2 < genoty peP op[n2]
currentg ene 1 < mutate (current genel, M rate = rate)
currentg ene?2 < mutate (current gene2, M rate = rate)
currentg ene 1, currentg ene? < tour nament (currentg enel, currentg ene?)

genoty peP op[n1] < currentg ene 1
genoty peP op[n2] < currentg ene?2
end for




3.1 Fitness

The aim of the robot is to walk as far as possible within the limited sequence
space, by using a distance sensor. Fitness will be measured in millimeters,
rather than percentage. These millimeters represent how far the robot got when
stepping out.

fitness = initial Distanc e — currentD istance 2)

Any fitness below 4 will be classed as 0 as the robot may have tilted to face
the ground. This is not an optimal solution. This does mean the robot must
have a reasonable distance between itself and the wall. For this experiment we
will give it 1 meter.

Algorithm 3 Calculate Fitness
Require: [N Tstar tD istance, IN T endD istance
Ensure: fitnessinmm

gained <« star tDistance — endD istance 1

if gained > 4 then

return gained
end if
return 0

The above pseudo-code shows the fitness where the algorithm is penalized
for being too close or further away.

3.2 Mutation

Mutation is defined within the algorithm as a percentage chance that each gene
(motor angle positions) will be mutated. If it is to be mutated a random position
will be chosen, and this position will be changed to another value picked from
our selection of potential angles, specified at the beginning of this section.

Algorithm 4 Mutate
Require: Listg enoty pe, f loatr ate, listpossibl eM oves
Ensure: Listmutatedg enoty pe
for i = Otogenoty pe.siz e do
if random ,ercentag e() < rate then
step « genoty peli]
step [random ,osition ()] < possibl eM oves[random ,osition ()]
genoty pe[l] « step
end if
end for
return genoty pe




3.3 Implemen tation

There are two loops, one represen ting an increasing mutation rate and another
for the generations. Each task starts off with the same genotype in order to
fairly compare the changes made through mutation. This prevents a randomly
generated genotype being closer to a walking algorithm than what was gener-
ated for another experiment. Each will have a starting fitness of O before the
generation begins. We will gather from mutation rates between (inclusive) 10%
and 80%. There will be 15 generations to generate a walking pattern. This
small number is appropriate as there is a limited search space and it is applied
to all experiments. When implemen ting the microbial GA the population size
could not exceed 3 due to memory issues. As the population size was larger
than two the algorithm could run, as it differed from a hill climber.

A few changes were made to the existing functions from the hill climber, in
the microbial algorithm for memory. This did not effect the end solution as the
functions still performed the same tasks .

At the end of the experiment, significant mutation rates will be selected
and ran again multiple times to calculate averages. This will be to determined
how effective a mutation rate is and remove fluke values. By the end, three
experiments will be run on each selected value.

4 Results

Mutation Rates of GA Fithess vs Generations (Hill Climber)
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Figure 2: Generation versus Fitness of Hill Climber



Plotting each fitness of all generations for every percentage didn’t show any
obvious trends. There is a larger grouping of low fitnesses mainly for rates 30%,
40%, 70% and 80%.

Mutation Rates of GA Fitness vs Generations (Microbal)
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Figure 3: Generation versus Fitness of Hill Climber. Blue points show the
microbial points and red shows the hill climber

Figure 3.2 shows the same format of data for the microbial GA. It shows
similar information where the ma jority of higher mutat ion rates performed lower
throughout. With 40%, 70% and 20% showing high fitness at the end.



Scatter of average fitness
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Figure 4: Average fitness of each percentage mutation rate

By compressing figure 4 into the average fitness for each generation, we see
20% is considerably higher compar ed to the next top fitness. The hill climber
out performed the microbial in this test case. 20% was still on the high end of
the microbial fitness.

Scatter of positions of optimimal solutions
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Figure 5: Lowest generation with solution for each mutation rate



The plots of the percentages of mutation rate against the earliest generation
of the top solution (mainly sub-optimal) found within each experiment shows
how quickly a solution was found. The average generation of finding a solu-
tion was generation 9 for the hill climber. The microbial average generation of
solution was 7. Only one experiment did not find a solution.

Scatter of changes to top fithess
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Figure 6: Number of chan ges of best fitness made for each mutation rate

We plot the number of changes made, where the current fitness is better
than the held fitness.



Maximum and minimum points vs mutation rate
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Figure 7: Maximum and minimum fitness of each percentage mutation rate

Finally, we see that every experiment fell over or walked backwards at least
once. This is how fitness of Omm is measured.

After analyzing the results, 20, 40 and 70 % mutation rates were selected to
run further experiments per mutation rate.

Fitness vs Generations for Microbal
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Figure 8: Fitness vs mutations of 3 trials for each significant mutation rate using
the Microbial algorith m
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Each colour represents the same mutation rate, but a different trial. It is
clear to see 0.2 as the higher rate.

Fitness vs Generations for Hillclimber
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Figure 9: Fitness vs mutations of 3 trials for each significant mutation rate using
the Hill climber

Average Fitness vs Generations for both algorithms
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Figure 10: Fitness vs mutations of 3 trial s as averages over the 3 trial s

Figure 10 helps distinguish fluke values and trials within our experiment.
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5 Discussion

The results show the optimal mutati on rate for the problem of the 4 joint walk-
ing optimization. This was a mutation rate of 20%. The results show that a
mutation rate of 10% took a long time to reach a solution within the hill climber
and found a low fitness solution in the microbial, most likely due to the fact
that little would change in the genotype at each iteration. The average fitness
was relativ ely low in comparison to other results.

With a higher mutation rate the robot would fall over at a higher rate.
When using the hill climber it would fail to correct this in the next iteration at
a higher mutation rate. We can see in Figure 2 a large number of generations
which fails to gain a high fitness. In Figure 3 we see a steady low fitness. Due to
the large amounts of change resulting from a higher mutation rate, it is harder
for the algorithm to work out what caused the low fitness and what didn’t. This
suggests a lower mutation rate is more accurate in locating error.

There was no trend within the number of changes in Figure 6. This is likely
due to the random nature of genetic algorithms. It seems the average change
was from 2 to 3 changes.

Although in Figure 5 many of the higher mutation rates converge to a solu-
tion quicker, we see that the average fitness for the respective rates displayed in
Figure 4 are low.

In Figure 7 the fitness is much higher for a 20% rate than the other mutati on
rates of its algorithm. This is unlikely as a result of the mutation function. 20%
microbial mutation rate out performed the hill climber results.

After experimenting with 3 trials on each mutation rate, we see that 20%
out-p erforms the other chosen rates (see Figure 8). This backs up what has
previously been discussed within this section.

5.1 Future work

The controller board used in the project had limited memory. This held back
how in depth the algorithms could go, as well as number of steps and population
size. For furth er development in this project one would need a controller with
a larger capacity for longer arrays. This would likely a Raspb erry Pi for its
Python capabilities.

6 Conclusion

To conclude there is an optim um mutation rate for a genetic algorithm. For the
task of moving a 4 joint chassis, the optimum was 20%. At 20% the algorithm
converged on average in fewer generations compared to other mutation rates
and adapted better to lower fitness than higher mutation rates.

We have demonstrated that the use of a 20% mutation rate is best for a
genetic algorithm for the task of walking. If the mutation rate is too high, the
algorithm will find it harder to find which mutations were supp ortiv e to the task
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and which were not, increasing the probabilit y of mistak e. If the mutation rate
is too low, then not enough mutations will tak e place for the algorithm to reach
a optimal or sub-optimal solution in a small number of generations.

20% worked better for both the Microbial and Hill Climber algorithms. This
was found to be the case in a series of repeated trials. Advancing this model so
that fitness can be taken via a series of sensor metho ds and a larger population
size of genotypes will greatly impro ve this experiment. This would be the sub ject
of future work.
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7 App endix

Hill Climber

from adafruit_servokit inport ServoKit
from board import D9, D6

from random inport randint, choice, random
from time inport sleep

from adafruit_hcsr04 import HCSRO4

sonar = HCSRO4(trigger_pin=D9, echo_pin=D06)
kit = ServoKit (channels=8)

#setup motors and genotype

mot or Start =[90, 100, 140, 110] #start angles

Megenotype=[[choice([0,30,-30,0,0]) for x in range(4)] for i in
range(10)] #n steps as max

di st No=0

def getDist(): #get the distane reading
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dist =None
while dist==None: #get numeric value
try:
dist =sonar. distance
except RuntimeError: #do not return error
pass
return int(dist)
def move(angles):
for i,ang in enumerate(angles): #move the servos by the given
angles
if kit.servo[i].angle+ang>=0 and kit.servo[i].angle+ang<=
180: #validate the change
is in range
kit.servo[i].angle+=ang #set each servo to change
sleep(0.2) #prevent over current draw
sleep(1l) #give time to rest

def st(angles): #move all servors to the given angles
for i,ang in enunmerate(angles)
kit.servo[i].angle=ang #set servo angle
def mutate(geno,rate=0.2): #nutate the genotype with the given rate
for i in range(len(geno))
if random() < rate: #if rate% chance
pos=geno|i]
n2=randint (0, len(pos)-1) #nmutate again
c=[0,30,-30,0,0]
c.renmove(pos[n2])
pos[n2]=choice(c) #unique
genoli]=pos.copy()
return geno #return nmutated
print("start")
for z in range(10): #loop through the sample size of rates (10% 20
%, ..., N%
st (nmotorStart)
lastFitness=0
store=[ ]
genot ype=Mgenot ype. copy() #copy over the main genotype to give
a fair experiment
for i in range(15): #total of 15 generations
sleep(1) #time to reset if fallen over
distNo=getDist () #start dist
print ("Generation",i+1)
current Geno=nutate( genotype.copy(),rate=((z+1)/10)) #nutate
via rate defined by z

for j,step in enunerate(currentGeno): #move motors by each
position specified in
genotype
move(step)

cd=getDist () #get the new distance
fit = distNo-cd

print (cd, distNo)

if cd<=distNo and cd>10: #fitness function not written as
function to conserve
memory
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print (fit)
if fit>lastFitness: #if fitness is better
print("fitter")
genotype=current Geno. copy() #set the fitter
genotype
lastFitness=fit #store the best fitness
else:
fit=0
store. append(fit) #store the fitness of each round
st(motorStart) #reset to start position to fairly test the
next generation
sleep(1)
print(j,store) #show console what is going on

microbial

from adafruit_servokit inport ServoKit
from board inport D9, D6

from random inport randint, choice, random
from time inmport sleep

from adafruit_hcsr04 inmport HCSR04

sonar = HCSRO4(trigger_pin=D9, echo_pin=D6)
kit = ServoKit (channels=8)

#setup motors and genotype
PopGenotype=[[[-30, 0, 30, 0], [0, O, -30, O], [0, O, O, O], [30, O
, 30, 30}], [30, 0, 30, 0], [0, O,
-30, 0]}, [[30, 0O, O, O], [0, 30
, 0, -30], [0, O, 0O, O], [0, O,
30, 0], [30, 0, -30, -30], [30, O
, 0, -30]], [[0, O, O, O], [0, O,
3o, oj, [0, 0, 30, O], [0, 30, O
, -30], [0, 0, -30, 0], [0, O, O,
-3077]

PopGenotype =[]
popsize=3
for i in range(popsize): #population size 10
PopGenotype. append([[ choice([0,30,-30,0,0]) for x in range(4)]
for i in range(6)])#n steps
as max

"o

def getDist(): #get the distane reading
dist =None
while dist==None: #get numeric value
try:
dist =sonar. distance
except RuntimeError: #do not return error
pass
return int(dist)
def move(angles):
for i,ang in enumerate(angles): #move the servos by the given
angles
if kit.servo[i].angle+ang>=0 and kit.servo[i].angle+ang<=
180: #validate the change
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is in range
kit.servo[i].angle+=ang #set each servo to change
sleep(0.2) #prevent over current draw
sleep(1) #give time to rest

def st(): #move all servors to the given angles
kit.servo[O0].angle=90 #set servo angle
kit.servo[1].angle=100 #set servo angle
kit.servo[2].angle=140 #set servo angle
kit.servo[3].angle=110 #set servo angle
def mutate(geno,rate=0.2): #nutate the genotype with the given rate
for i in range(len(geno))
if random() < rate: #if rate% chance
pos=geno|i ]
n2=randint (0, len(pos)-1) #mutate again
c=[0,30,-30,0,0]
c.remove(pos[n2])
pos|[n2]=choice(c) #unique
genoli]=pos.copy()
return geno #return mutated

for z in range(10): #loop through the sample size of rates (10% 20
%, ..., N%
lastFitness=0
PopGenotype=[[[-30, O, 30, O], [0, O, -30, O], [0, O, O, O], [
30, 0, 30, 30], [30, 0O, 30, O
1, [0, O, -30, O]], [[30, O,
o, 0], [0, 30, O, -30], [0, O
o, 0], [0, O, 30, O], [30,
, -30, -30], [30, 0, O, -30]
, [[0, O, O, O], [0, O, 30,
], [0, O, 30, O], [0, 30, O,
-30], [0, O, -30, O], [0, O,
0, -30], [0, O, 30, O], [O,
30, 0, -30], [0, O, -30, O]
[0, 30, 0, -30]]]

for i in range(15): #total of 15 generations
print ("Generation",i+1)
st ()
sleep(2) #time to reset if fallen over
distNol=getDist () #start dist

nl=randint (0, popsize-1) #gather the population samples
n2=randint (0, popsize-1)

current =PopGenotype[nl]. copy()
current =mutate(current ,rate=(z+1)/10)

for step in current: #move motors by each position
specified in genotype
move(step)

cdl=getDist () #get the new distance

current =PopGenot ype[n2]. copy()
current =mutate(current ,rate=(z+1)/10)
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st() #reset to start position to fairly test the next
generation

sleep(2) #time to reset if fallen over

distNo2=getDist () #start dist

for step in current: #move motors by each position
specified in genotype
move(step)
cd2=getDist () #get the new distance

print (max(distNol-cdl, distNo2-cd2))

if distNol-cdl>distNo2-cd2: #tournament selection
PopGenot ype[ n2] =PopGenotype[nl].copy()

else:
PopGenot ype[nl]=PopGenotype[n2].copy()

print ((z+1)*10) #show console what is going on
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